

APA TransportationPlanning Division

2018 State of Transportation Planning Webinar

July 20, 2018

A TRANSPORTATION TECHNOLOGY STRATEGY FOR LOS ANGELES

Urban MOBILITY in a Digital Age

LADOT Technology Strategy Framework

Build a solid data foundation.

Leverage
technology
+ design for a
better
transportation
experience.

Create partnerships for more shared services.

Support continuous improvement through feedback.

Prepare for an automated future.

POLICY + IMPLEMENTATION + PILOTS

PLATFORM FOR MOBILITY INNOVATION

DATA AS A SERVICE + MOBILITY AS A SERVICE + INFRASTRUCTURE AS A SERVICE

Implementing LA's Transportation Technology Strategy

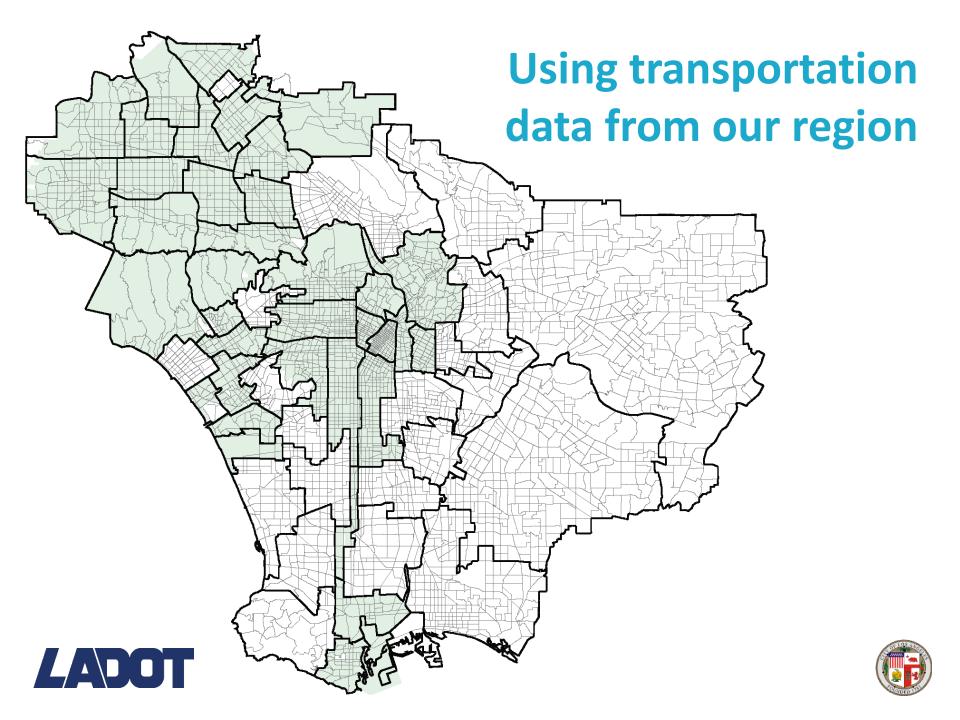
Collected trip data from housing & mixed use sites in our City

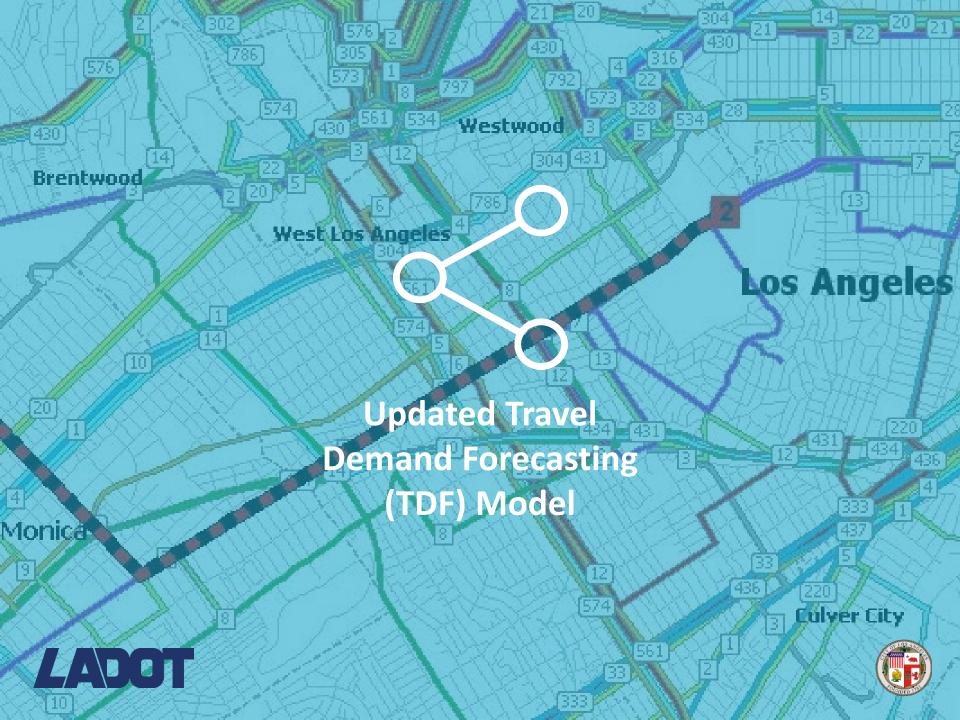
partnerships for more shared services.

continuous improvement nrough feedbac

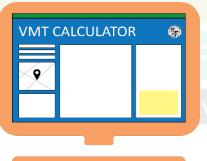
Prepare for an utomated future

Updated Travel Demand Forecasting (TDF) Model


DATA AS A SERVICE + MOBILITY AS A SERVICE + INFRASTRUCTURE AS A SERVICE


Defined localized trip generation rates & vehicle miles traveled (VMT) estimates

Status of LA's Transportation Technology Strategy Implementation


Build a solid data foundation.

Leverage
technology
+ design for a
better
transportation
experience.

Create partnerships for more shared services.

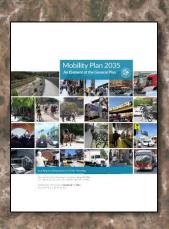
Support continuous improvement hrough feedback.

Prepare for an automated future.

POLICY + IMPLEMENTATION + PILOTS

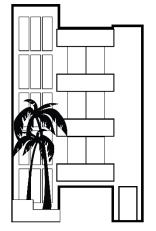
ORM FOR MOBILITY INNOVATION

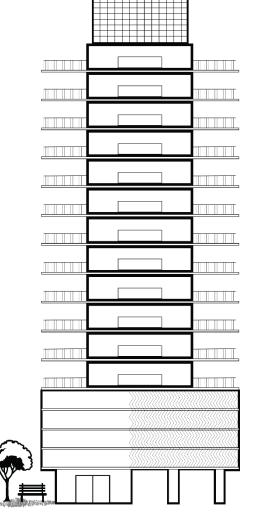
Built a customized VMT Calculator



Emphasis on **local vehicle delay** has encouraged development far away from frequented destinations

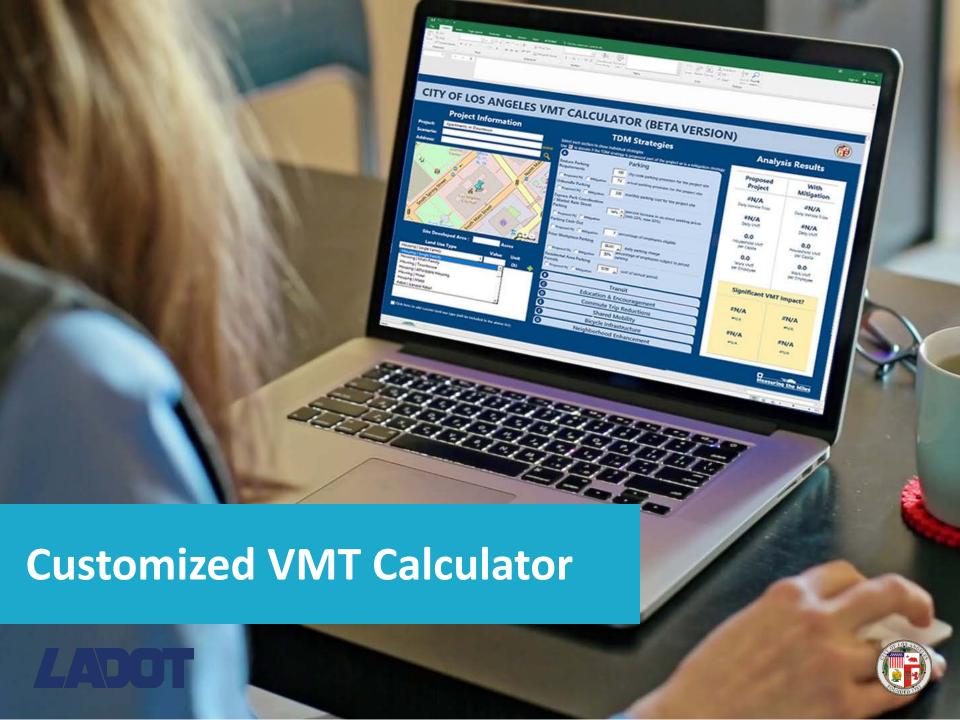
Creating tools to support sustainable transportation outcomes


- * Promote clean mobility options to reduce criteria pollutants and greenhouse gas emissions
- * Deliver options and inform choices for more sustainable travel
- * Provide clean environments & healthy communities

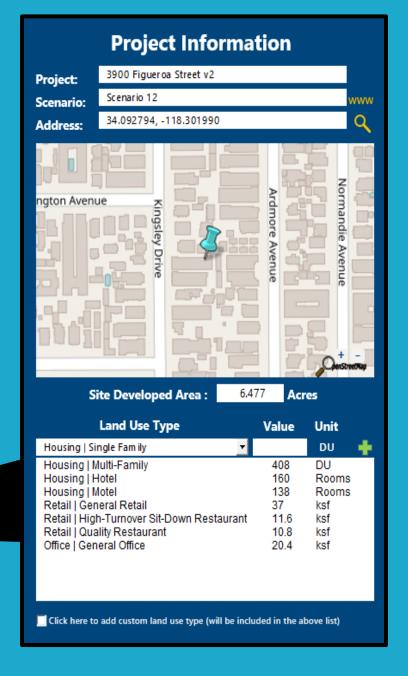

LA' Planned Project Review Process

Step 1

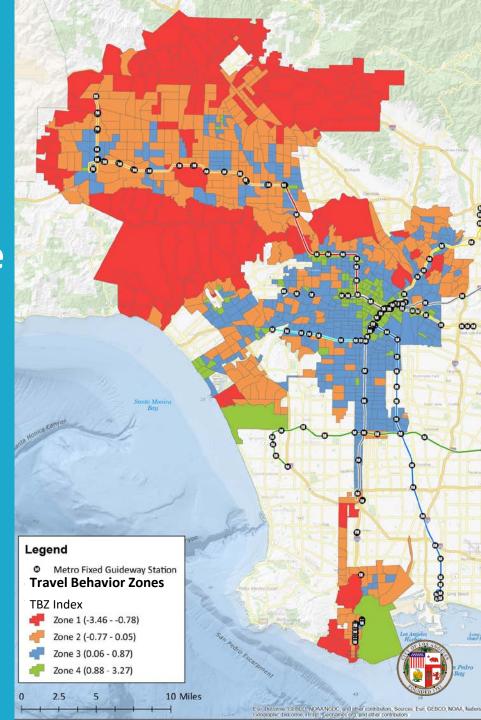
Project Screening Criteria will describe the types of projects that are not required to submit a technical analysis

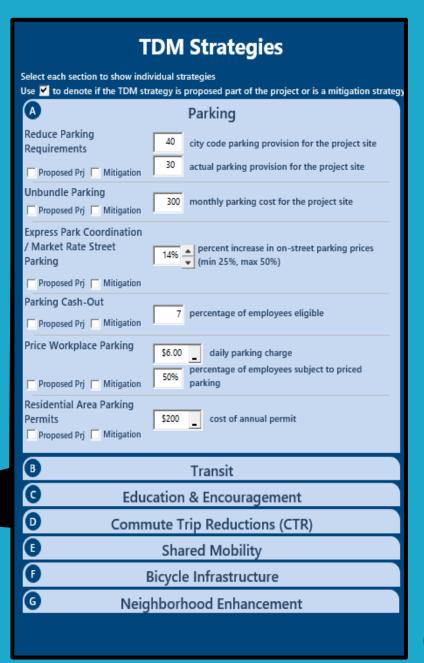


LA' Planned Project Review Process


Project Screening Criteria Step 1 Prepare a VMT Impact Analysis Step 2 **TRAVEL** VMT CALCULATOR DEMAND O **MODEL** Does **not** meet project screening criteria

VMT Calculator requires a project description




VMT Calculator
estimates effectiveness
of VMT reduction
strategies based on place

VMT Calculator provides many VMT reduction strategies to choose from

Apply TDM Measures to Reduce VMT

Parking management

Transit incentives

Education + marketing

Commute trip sharing

Neighborhood connectivity

Shared mobility services

VMT Calculator estimates proposed project VMT impact

Analysis Results

Proposed	With Mitigation 3,891	
Project		
6,042		
Daily Vehicle Trips	Daily Vehicle Trips	
44,799	28,845	
Daily VMT	Daily VMT	
7.4	4.8	
Houseshold (HH) VMT	Houseshold (HH) VMT	
per Capita	per Capita	
11.3	7.2	
Work VMT	Work VMT	
per Employee	per Employee	
20,796	13,390	
Retail VMT	Retail VMT	
Significant \	VMT Impact?	
HH: Yes HH: No		

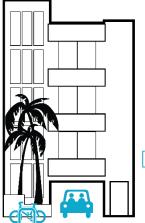
Threshold = 6.2
15% Below APC
Work No

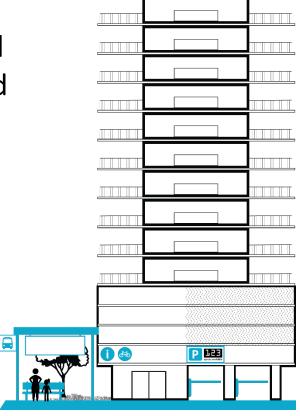
Threshold = 11.8 15% Below APC

Threshold = 6.215% Below APC

Work: No

Threshold = 11.8 15% Below APC


LA' Planned Project Review Process


Step 1 Project Screening Criteria

Step 2 VMT Impact Analysis

Step 3 Project implements TDM and reduces vehicle miles traveled

New
Transportation
Study Procedures

Affordable Housing & Mixed Use Vehicle Trip Adjustments

Localized Trip
Generation Rates
& VMT

Area-Specific VMT Impact Criteria

New Evaluation Process

LADOT

New Transportation Study Procedures

Affordable Housing & Mixed Use Vehicle Trip Adjustments

Credit System & Monitoring for TDM

Localized Trip
Generation Rates
& VMT

Area-Specific VMT Impact Criteria

New Evaluation Process

LADOT

New
Transportation
Study Procedures

Updated Tools for Evaluation

Affordable Housing & Mixed Use Vehicle Trip Adjustments

Credit System & Monitoring for TDM

Localized Trip
Generation Rates
& VMT

Area-Specific VMT Impact Criteria

New Evaluation Process

LADOT

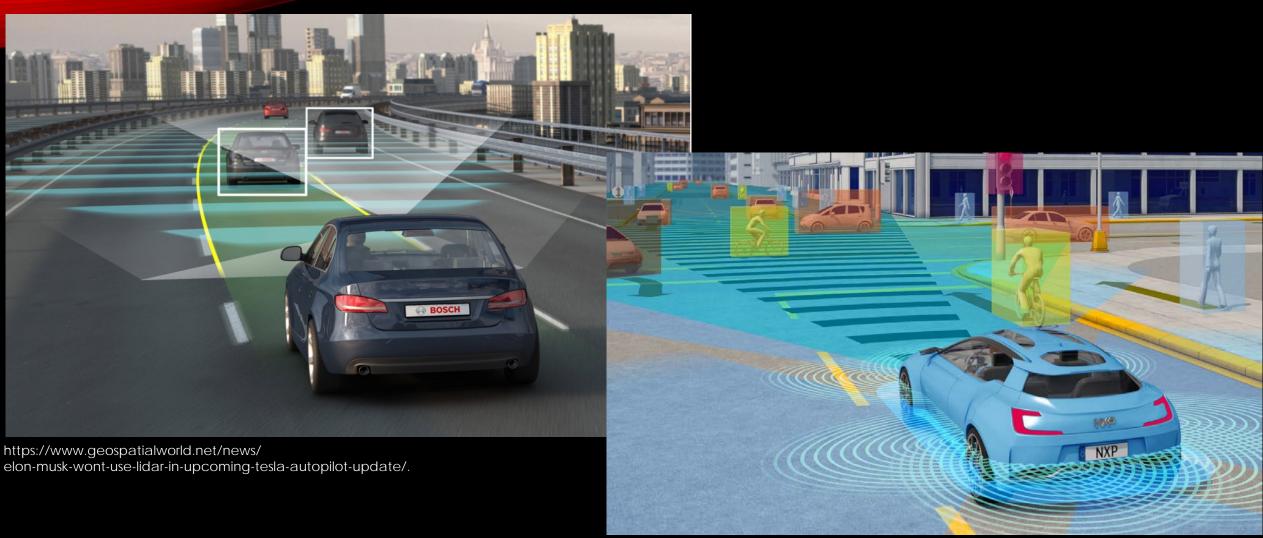
PLANNING FOR AUTONOMOUS VEHICLES

Distilling Reality from Fantasy

State of Transportation Planning 2018 July 20, 2018

David Heller, AICP/PP
Program Manager-Systems Performance and Subregional Programs
South Jersey Transportation Planning Organization

American Planning Association


Making Great Communities Happen

DISCLAIMER

 This presentation has been financed in part by the U.S. Department of Transportation, Federal Highway Administration (FHWA). This presentation is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents Or its use thereof.

• The contents of this report reflect the views of the author who is responsible for the facts and the accuracy of the data presented herein. The contents do not reflect the official views or policies of the South Jersey Transportation Planning Organization (SJTPO), its member jurisdictions, the SJTPO Policy Board, the South Jersey Transportation Authority (SJTA), or the FHWA. This report does not constitute a standard, specification, or regulation.

WHAT IS AN AUTONOMOUS VEHICLE?

https://www.geospatialworld.net/videos/peter-hawkins-shares-recent-innovations-of-here-technologies/

WHO'S DEVELOPING THEM?

• TESLA Model S

• Ford Fusion

Google Waymo

• GM Cruise LV

• Daimler-Bosch

LEVELS OF AUTOMATION

SOCIETY OF AUTOMOTIVE ENGINEERS (SAE) AUTOMATION LEVELS

Full Automation

0

No Automation

Zero autonomy; the driver performs all driving tasks.

Driver Assistance

Vehicle is controlled by the driver, but some driving assist features may be included in the vehicle design. 2

Partial Automation

Vehicle has combined automated functions, like acceleration and steering, but the driver must remain engaged with the driving task and monitor the environment at all times.

3

Conditional Automation

Driver is a necessity, but is not required to monitor the environment. The driver must be ready to take control of the vehicle at all times with notice.

4

High Automation

The vehicle is capable of performing all driving functions under certain conditions. The driver may have the option to control the vehicle.

5

Full Automation

The vehicle is capable of performing all driving functions under all conditions. The driver may have the option to control the vehicle.

https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety

CHALLENGES

- Combining heavy equipment plus complex software difficult
- Liability
- Cost
- Full benefits may not be realized for a while
- Limited Market Penetration initially
- Economic impacts

WHAT IS BEING DONE NOW

http://www.businessinsider.com/university-of-michigan-builds-city-for-self-driving-cars-2015-7.

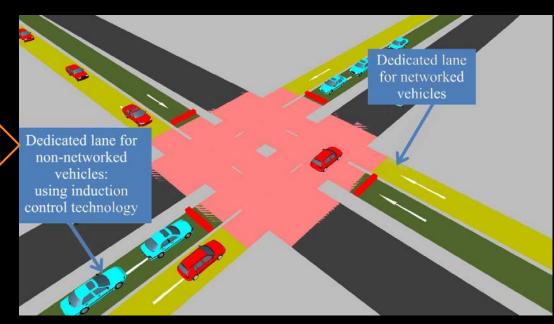
AV IMPACTS OVER TIME

Impact	Functional Requirements	Planning Impacts	Time Period
Become legal	Demonstrated functionality and safety	Define performance, testing and data collection requirements for automated driving on public roads.	2015-25
Increase traffic density by vehicle coordination	Road lanes dedicated to vehicles with coordinated platooning capability	Evaluate impacts. Define requirements. Identify lanes to be dedicated to vehicles capable of coordinated operation.	2020-40
Independent mobility for non-drivers	Fully autonomous vehicles available for sale	Allows affluent non-drivers to enjoy independent mobility.	2020-30s
Automated carsharing/taxi	Moderate price premium. Successful business model.	May provide demand response services in affluent areas. Supports carsharing.	2030-40s
Independent mobility for lower-income	Affordable autonomous vehicles for sale	Reduced need for conventional public transit services in some areas.	2040-50s
Reduced parking demand	Major share of vehicles are autonomous	Reduced parking requirements.	2040-50s
Reduced traffic congestion	Major share of urban peak vehicle travel is autonomous.	Reduced road supply.	2050-60s
Increased safety	Major share of vehicle travel is autonomous	Reduced traffic risk. Possibly increased walking and cycling activity.	2040-60s
Energy conservation and emission reductions	Major share of vehicle travel is autonomous. Walking and cycling become safer.	Supports energy conservation and emission reduction efforts.	2040-60s
Improved vehicle control	Most or all vehicles are autonomous	Allows narrower lanes and interactive traffic controls.	2050-70s
Need to plan for mixed traffic	Major share of vehicles are autonomous.	More complex traffic. May justify restrictions on human-driven vehicles.	2040-60s
Mandated autonomous vehicles	Most vehicles are autonomous and large benefits are proven.	Allows advanced traffic management.	2060-80s

SOURCE: Todd Litman. "Autonomous Vehicle Implementation Predictions." Victoria Transport Policy Institute. 8 September 2017. 8

CONSIDERATIONS FOR PLANNERS

- 1. Increase public investment in research and development in technology
- 2. Paradigm shift: "Mobility as a Service"
- 3. Continue incentivizing alternative modes; especially ride-sharing
- 4. Trade-offs between reduced parking and increased congestion.
- 5. Cultural shift in travel behavior.


CONSIDERATIONS FOR PLANNERS (continued)

6. Land Use Strategies to accommodate AV operation

7. Legal Issues

8. Plan for mixed traffic

9. Time to begin planning is NOW!

https://www.youtube.com/watch?v=sB3vXYr4kL4

10. Planning must account for uncertainty.

QUESTIONS

For Further Information, contact

David Heller, PP/AICP Program Manager—Systems Performance and Subregional Programs South Jersey Transportation Planning Organization dheller@sjtpo.org

American Planning Association

Making Great Communities Happer.

State of Transportation Planning

Advances in Automated Bicycle & Pedestrian Counting

Nathan Hicks, AICP

07/20/2018

- What is most often used now?
 - Infrared (Passive and Active)
 - Pneumatic Tubing
 - Manual Methods

- Pros and Cons?
 - Cheap/easy to install
 - Difficulties with data

 CDM Smith completed a non-motorized transportation data collection study for the Florida Department of Transportation.

- We utilized the most common methods for counting bicyclists and pedestrians, but found there were limitations.
 - Nature and the built environment can influence the data.

Where is the field progressing?

 Significant research in the field of "Computer Vision". This is influencing not only autonomous vehicles, but is opening doors in other fields as well.

- What can "Computer Vision" allow?
 - The ability to count bicyclists and pedestrians in different environments.
 - Not only is it important that bicyclists and pedestrians are counted,
 but these advances could allow for additional types of analyses.

What can "Computer Vision" allow?

- It can also determine direction, speed, classification, helmet usage and potential conflicts between users.
- Safety analyses at intersections are one example, furthering the goal of "Vision Zero".

Behavior analyses is another potential use.

- There is ongoing and future research!
 - Robotics Institute at Carnegie Mellon University.
 - UBC Bureau of Intelligent Transportation Systems and Freight Security.

- Both organizations have completed research using Computer
 Vision and counting bicyclists and pedestrians.
 - Accuracy of bicyclists and pedestrian counting ranged from 90.1% to 95.1%.

- What can be expected in the coming years?
 - Additional research and refinement is needed. Accuracy is good, but needs to be improved.
 - As new modes come into play, models will need to be adjusted (Dockless scooters).

Transportation Agencies Adopt a Scenario Planning Approach for the Uncertain Road Ahead

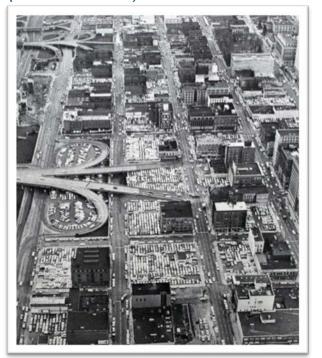
Summary Presentation

Presented by: Tim Storer (ICF)

July 20, 2018

Driving Change

Los Angeles

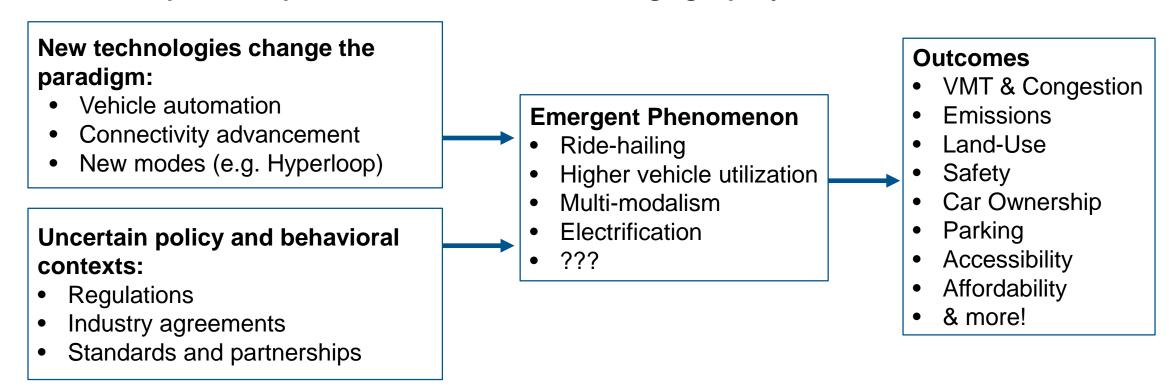

- 1920s: one of the worlds largest transit systems and busiest pedestrian crossings
- Decades of auto-centric actions contributed to reversing this trend
- Today: routinely ranks among the most traffic congested cities in the world (INRIX)

Portland

- Similar decision making trajectory; by 1970s, much of downtown devoted to parking
- 1980s: forward-thinking policies directed growth towards key corridors, facilitated density, and helped revitalize the economy
- Today: Routinely ranks as one of the best cities in the US for bicycling, walking and transit

Downtown Los Angeles in 1920s (Source: KCET)

Downtown Portland in 1970s (Source: Portland Architecture)



Setting the Stage: A Changing Landscape

The role, function, and behavior of automobile travel has been reasonably stable established pattern in prior decades... but that is changing rapidly.

Planning for Uncertainty

- Scenario planning offers a systematic approach to:
 - Survey past and present transportation developments
 - Explore possible trajectories of change and their underlying drivers
 - Assess opportunities and risks associated these trajectories
- State of Technology Readiness Planning
 - National League of Cities (2015): 6% of agencies incorporated AVs
 - National League of Cities (2018): 36% of cities planning for AVs
 - Early adopters include Jacksonville Transportation Authority, Maryland DOT,
 Washington State DOT

Jacksonville Transportation Authority

Literature Review

Analyze Plans

- Future population distribution/composition
- Planned/programmed investments

Workshop (2017)

- Convene peer agencies
 - Form scenarios

Conceptual Rendering of Jacksonville's Ultimate Urban Circulator (Source: JTA)

Determine Goals

- 1. Promote itself in the community.
- 2. Improve service
- 3. Pursue tech and partnerships
- 4. Identify tech-enabled efficiency improvements
- 5. Be involved with land development process

FHWA's Scenario Planning for CVs and AVs:

Project Goals

Purpose:

- Equip agencies to deal with uncertainty
- Reduce burden on state and local agencies in addressing CV/AV risks and opportunities

Project Outcomes and Deliverables

- Develop 5-6 descriptive scenarios of potential futures related to CV/AV deployment, adoption, use and likely impacts through a collaborative approach with FHWA, invited stakeholders and subject matter experts
- Conduct 2 workshops to validate, refine, and test the descriptive scenarios
- Final report including (1) Methodology for creating the scenarios and (2) high-level qualitative assessments of scenario impacts to planners and to society
- Practitioner Guidance document to serve as a stand-alone resource for planners to conduct their own scenario planning exercises

Scenario Development Process **Drivers and Levers**

Technological Developments

- 5G and/or DSRC advancement
- Rapid sensorization
- Growth in mobile platforms
- Cybersecurity Standards
- New smartphone applications
- Big Data analytics
- New vehicle designs
- Declining EV prices

Consumer Preferences

- Car Ownership
- Acceptance of new tec
- Security vs Conver siness models (e.g.
- Eco-Consciousness
- Bike/ped preferences

n surrounging venicle movements, and what kind of information are

ocio-Economic Factors

Demographics

Government Actions

- Technology mandates or bans
- Federal tax incentives
- International/national climate policy
- VMT/congestion pricing Transit investment

SAE levels of automation are available and affordable, and in what areas can they operate?

Cooperation

To what extent do agencies and companies adjust their operational practices and policies in accordance with other entities? Is there integrated payment, synchronization in schedules, multi-modal infrastructure development, etc.?

· ·	•		
Overall System			purpose or "niche" applications
Niche Service Areas			
Ultimate Traveler Assist			CV technology progresses rapidly, but AV stagnates
Managed Automated Lanes	5		
Overall System			Certain lanes become integrated with CV and
AV lanes			AV
Competing Fleets			TNC-like services proliferate rapidly, but do
			not operate cooperatively
Automated Integrated Mobility			On-demand shared services proliferate and integrate with other modes via cooperative data sharing, policies, and infrastructure

2035 CV/AV Scenarios

Enhanced Driving Experience

Managed
Automated
Lanes
AV lane networks

AV travel is consolidated to a large-scale lane network with significant consumer adoption Ultimate Traveler Assist

Ultra-Connectivity

AV adoption stalls, CV becomes ubiquitous

Baseline

BaselineMinimal Plausible
Change

Accounts for advances in safety technology, TSMO and mobility services

Driver Becomes Mobility Consumer

Niche Service Growth

High AV/CV in certain cases

Niche applications for CV/AV dominate the landscape

Competing Fleets

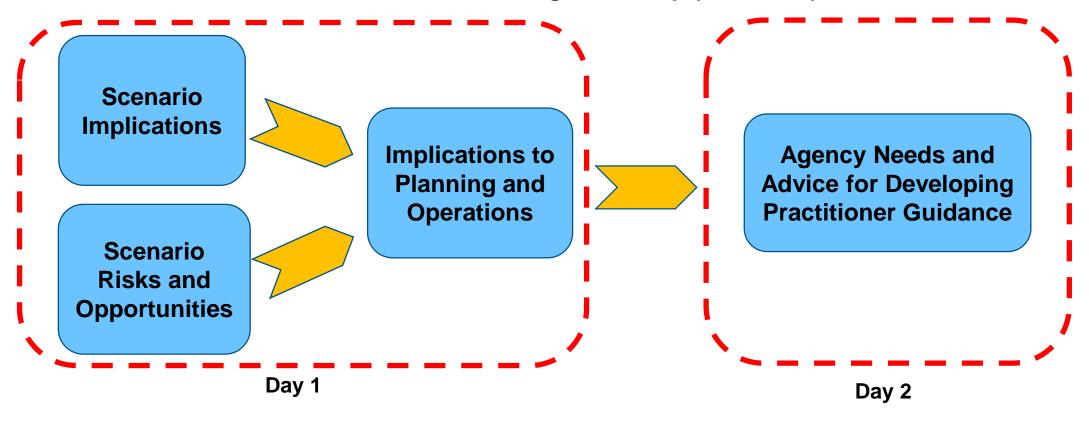
Automated TNC fleets compete

Level-4 AV is safe for most trips, travel is dominated by competing fleets

Integrated
Automated Mobility

Automated mobility-asa-service

Strong public-private partnership for system optimization


Trajectories towards CV/AV Advancements

TODAY (circa 2017)

How do we maximize usefulness of the scenarios?

Scenario Planning Workshop (Nov, 2017)

Common Risks in the Scenarios

	Relevant Scenarios							
Common Risks (Sample)	Slow Roll	Niche Service Growth	Ultimate traveler assist	Managed Automated Lanes	Competing Fleets	Automated Integrated Mobility		
Decreased value of roadway capacity expansion			X	X	X	X		
Equity - benefits felt only by certain groups	Х	X	Х	X	X	X		
Inadequate EV charging					Χ	X		

	Relevant Scenarios							
Commonly Valuable Agency Actions (Sample)	Slow Roll	Niche Service Growth	Ultimate Traveler Assist	Managed Automated Lanes	Competing Fleets	Automated Integrated Mobility		
Begin piloting and testing V2I systems	Х	Х	X	Х	X	X		
Digitize road signage, speeds, markings	Х	Х	X	Х	X	X		
Incentives for CV retrofits	Х	Χ	X	Х	Χ	Χ		

Causal Relationships and Tipping Points of the Scenarios

Managed **Automated** Lanes AV lane networks

AV travel is consolidated to a large-scale lane network with significant consumer adoption

- common, but needs special lanes/conditions
- Cities designate managed automated lanes, and set aside funding for infrastructure

· High level AVs become

AV adoption stalls, CV becomes ubiquitous

Ultimate Traveler

Assist

Ultra-Connectivity

- V2V mandate in place
- Proliferation of 5G or other data transfer methods for large-scale
- · Data-sharing agreements between key organizations

Competing **Fleets**

Automated TNC fleets compete

Level-4 AV is safe for most trips, travel is dominated by competing fleets

 Leader cities demonstrate integrated, coordinated MaaS systems, and show large benefits

Integrated Automated Mobility Automated mobility-as-a-

service

Strong public-private partnership for system optimization

Baseline

Minimal Plausible Change

Accounts for advances in safety technology, TSMO and mobility services

no further significant breakthroughs in CV or AV: only marginal growth

TODAY

· Level 4 AV tech becomes available at prices that are viable for commercial use

 Vehicles designed in mass to support shared-AV rides.

· Level 4 AV technology becomes

Pilot programs of Level 4 AVs are

available, but is incapable of

operating in many contexts

successfully tested; some

transition to commercial use

Car ownership reduction, especially urban

Niche Service Growth

High CV/AV in certain cases

Niche applications for CV/AV dominate the landscape

(circa 2017)

Practitioner Guidance Components

1. Define and Understand CV/AV

2. Determine goals and stakeholders in your planning process

3. Understand Driving Forces and Scenario Origins

4. Frame and Tailor the Scenarios

5. Incorporate Scenario Results into Decision-Making

6. Monitor industry and policy developments

Done iteratively

Conclusions

- Scenario planning has been and will continue to be a valuable tool for state and local planners
- There is no one-size-fits-all approach to scenario planning
 - Different contexts, resources, goals, and perspectives
 - Normative and exploratory

APA Transportation Planning Division 2018 State of Transportation Webinar Presenters Contact Information:

LADOT Karina Macias: karina.macias@lacity.org

David Somers: david.somers@lacity.org

SJTPO David Heller, PP/AICP: dheller@jtpo.org

CDM Smith Nathan A. Hicks, AICP: hicksna@cdmsmith.com

ICF Tim Storer: <u>Tim.Storer@icf.com</u>

Les Brown: les.brown@icf.com

Report https://www.planning.org/divisions/transportation/report/